Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties

Vladimir Berikov, Igor Pestunov

Результат исследования: Научные публикации в периодических изданияхстатья

23 Цитирования (Scopus)

Аннотация

We consider an approach to ensemble clustering based on weighted co-association matrices, where the weights are determined with some evaluation functions. Using a latent variable model of clustering ensemble, it is proved that, under certain assumptions, the clustering quality is improved with an increase in the ensemble size and the expectation of evaluation function. Analytical dependencies between the ensemble size and quality estimates are derived. Theoretical results are supported with numerical examples using Monte-Carlo modeling and segmentation of a real hyperspectral image under presence of noise channels.

Язык оригиналаанглийский
Страницы (с-по)427-436
Число страниц10
Журнал Pattern Recognition
Том63
DOI
СостояниеОпубликовано - 1 мар 2017

Fingerprint Подробные сведения о темах исследования «Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать