Elementary symmetrization of inviscid two-fluid flow equations giving a number of instant results

Lizhi Ruan, Yuri Trakhinin

Результат исследования: Научные публикации в периодических изданияхстатья

4 Цитирования (Scopus)

Аннотация

We consider two models of a compressible inviscid isentropic two-fluid flow. The first one describes the liquid–gas two-phase flow. The second one can describe the mixture of two fluids of different densities or the mixture of fluid and particles. Introducing an entropy-like function, we reduce the equations of both models to a symmetric form which looks like the compressible Euler equations written in the nonconservative form in terms of the pressure, the velocity and the entropy. Basing on existing results for the Euler equations, this gives a number of instant results for both models. In particular, we conclude that all compressive shock waves in these models exist locally in time. For the 2D case, we make the conclusion about the local-in-time existence of vortex sheets under a “supersonic” stability condition. In the sense of a much lower regularity requirement for the initial data, our result for 2D vortex sheets essentially improves a recent result for vortex sheets in the liquid–gas two-phase flow.

Язык оригиналаанглийский
Страницы (с-по)66-71
Число страниц6
ЖурналPhysica D: Nonlinear Phenomena
Том391
DOI
СостояниеОпубликовано - 1 апр 2019

Fingerprint Подробные сведения о темах исследования «Elementary symmetrization of inviscid two-fluid flow equations giving a number of instant results». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать