Efficient integration for the SIMO-Miehe model with mooney-rivlin potential

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

A model of finite-strain visco-plasticity proposed by Simo and Miehe (1992) is considered. The model is based on the multiplicative split of the deformation gradient, combined with hyperelastic relations between elastic strains and stresses. This setup is a backbone of many advanced models of visco-elasticity and visco-plasticity. Therefore, its efficient numerical treatment is of practical interest. Since the underlying evolution equation is stiff, implicit time integration is required. A discretization of Euler backward type yields a system of nonlinear algebraic equations. The system is usually solved numerically by Newton-Raphson iteration or its modifications. In the current study, a practically important case of the Mooney-Rivlin potential is analyzed. The solution of the discretized evolution equation can be obtained in a closed form in case of a constant viscosity. In a more general case of stress-dependent viscosity, the problem is reduced to the solution of a single scalar equation or, in some situations, even can be solved explicitly. Simulation results for demonstration problems pertaining to large-strain deformation of different types of viscoelastic materials are presented.

Язык оригиналаанглийский
Название основной публикацииProceedings of the 6th European Conference on Computational Mechanics
Подзаголовок основной публикацииSolids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
РедакторыRoger Owen, Rene de Borst, Jason Reese, Chris Pearce
ИздательInternational Centre for Numerical Methods in Engineering, CIMNE
Страницы1927-1937
Число страниц11
ISBN (электронное издание)9788494731167
СостояниеОпубликовано - 1 янв 2020
Событие6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018 - Glasgow, Великобритания
Продолжительность: 11 июн 201815 июн 2018

Серия публикаций

НазваниеProceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018

Конференция

Конференция6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018
СтранаВеликобритания
ГородGlasgow
Период11.06.201815.06.2018

Fingerprint Подробные сведения о темах исследования «Efficient integration for the SIMO-Miehe model with mooney-rivlin potential». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Shutov, A. V. (2020). Efficient integration for the SIMO-Miehe model with mooney-rivlin potential. В R. Owen, R. de Borst, J. Reese, & C. Pearce (Ред.), Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018 (стр. 1927-1937). (Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018). International Centre for Numerical Methods in Engineering, CIMNE.