Effective categoricity for distributive lattices and Heyting algebras

Результат исследования: Научные публикации в периодических изданияхстатья

4 Цитирования (Scopus)

Аннотация

We study complexity of isomorphisms between computable copies of lattices and Heyting algebras. For a computable ordinal α, the Δα 0dimension of a computable structure S is the number of computable copies of S, up to Δα 0 computable isomorphism. The results of Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, and Hirschfeldt, Khoussainov, Shore, Slinko imply that for every computable successor ordinal α and every non-zero natural number n, there exists a computable non-distributive lattice with Δα 0 dimension n. In this paper, we prove that for every computable successor ordinal α ≥ 4 and every natural number n > 0, there is a computable distributive lattice with Δα 0 dimension n. For a computable successor ordinal α ≥ 2, we build a computable distributive lattice M such that the categoricity spectrum of M is equal to the set of all PA degrees over Ø(α). We also obtain similar results for Heyting algebras.

Язык оригиналаанглийский
Страницы (с-по)600-614
Число страниц15
ЖурналLobachevskii Journal of Mathematics
Том38
Номер выпуска4
DOI
СостояниеОпубликовано - 1 июл 2017

Fingerprint Подробные сведения о темах исследования «Effective categoricity for distributive lattices and Heyting algebras». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать