Аннотация
A group G is said to be rigid if it contains a normal series G = G1 > G2 > … > Gm > Gm+1 = 1, whose quotients Gi/Gi+1 are Abelian and, when treated as right ℤ[G/Gi]-modules, are torsion-free. A rigid group G is divisible if elements of the quotient Gi/Gi+1 are divisible by nonzero elements of the ring ℤ[G/Gi]. We describe subgroups of a divisible rigid group which are definable in the signature of the theory of groups without parameters and with parameters.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 237-252 |
Число страниц | 16 |
Журнал | Algebra and Logic |
Том | 59 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - июл 2020 |