Divisible Rigid Groups. Algebraic Closedness and Elementary Theory

Результат исследования: Научные публикации в периодических изданияхстатья

4 Цитирования (Scopus)


A group G is said to be rigid if it contains a normal series G = G1 > G2 > … > Gm > Gm+1 = 1, whose quotients Gi/Gi+1 are Abelian and, treated as right ℤ[G/Gi]-modules, are torsion-free. A rigid group G is divisible if elements of the quotient Gi/Gi+1 are divisible by nonzero elements of the ring ℤ[G/Gi]. Every rigid group is embedded in a divisible one. We prove two theorems. Theorem 1 says that the following three conditions for a group G are equivalent: G is algebraically closed in the class Σm of all m-rigid groups; G is existentially closed in the class Σm; G is a divisible m-rigid group. Theorem 2 states that the elementary theory of a class of divisible m-rigid groups is complete.

Язык оригиналаанглийский
Страницы (с-по)395-408
Число страниц14
ЖурналAlgebra and Logic
Номер выпуска5
СостояниеОпубликовано - 1 ноя 2017

Fingerprint Подробные сведения о темах исследования «Divisible Rigid Groups. Algebraic Closedness and Elementary Theory». Вместе они формируют уникальный семантический отпечаток (fingerprint).