Dispersive and hyperbolic models for non-hydrostatic shallow water flows and their application to steep forced waves modelling

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

Аннотация

We propose a hyperbolic system of first-order equations that approximates the 1D Nwogu model of the shallow water theory for non-hydrostatic unsteady flows. Solitary waves in the framework of these models are constructed and studied. The evolution of solitary waves on a mildly sloping beach is considered. We show that the solution of the hyperbolic system practically coincides with the corresponding solution of the Nwogu dispersive equations. Steep forced water waves generated by a harmonically oscillating rectangular tank are studied both experimentally and numerically. A comparison of the solutions of the modified Green-Naghdi and Nwogu equations with the obtained experimental data is made.

Язык оригиналаанглийский
Номер статьи012064
ЖурналJournal of Physics: Conference Series
Том1666
Номер выпуска1
DOI
СостояниеОпубликовано - 20 ноя 2020
Событие9th International Conference on Lavrentyev Readings on Mathematics, Mechanics and Physics - Novosibirsk, Российская Федерация
Продолжительность: 7 сен 202011 сен 2020

Fingerprint

Подробные сведения о темах исследования «Dispersive and hyperbolic models for non-hydrostatic shallow water flows and their application to steep forced waves modelling». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать