Development of Kazakh Named Entity Recognition Models

Darkhan Akhmed-Zaki, Madina Mansurova, Vladimir Barakhnin, Marek Kubis, Darya Chikibayeva, Marzhan Kyrgyzbayeva

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

Named entity recognition is one of the important tasks in natural language processing. Its practical application can be found in various areas such as speech recognition, information retrieval, filtering, etc. Nowadays there are a variety of available methods for implementing named entity recognition. In this work we experimented with three models and compared the performances of machine learning based models and probabilistic sequence modeling method on the task of Kazakh language named entity recognition. We considered three models based on BERT, Bi-LSTM and CRF baseline. In the future these models can be parts of an ensemble learning system for name entity recognition in order to achieve better performance results.

Язык оригиналаанглийский
Название основной публикацииComputational Collective Intelligence - 12th International Conference, ICCCI 2020, Proceedings
РедакторыNgoc Thanh Nguyen, Ngoc Thanh Nguyen, Bao Hung Hoang, Cong Phap Huynh, Dosam Hwang, Bogdan Trawinski, Gottfried Vossen
ИздательSpringer Science and Business Media Deutschland GmbH
Страницы697-708
Число страниц12
ISBN (печатное издание)9783030630065
DOI
СостояниеОпубликовано - 2020
Событие12th International Conference on Computational Collective Intelligence, ICCCI 2020 - Da Nang, Вьетнам
Продолжительность: 30 ноя 20203 дек 2020

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12496 LNAI
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

Конференция

Конференция12th International Conference on Computational Collective Intelligence, ICCCI 2020
СтранаВьетнам
ГородDa Nang
Период30.11.202003.12.2020

Fingerprint

Подробные сведения о темах исследования «Development of Kazakh Named Entity Recognition Models». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать