Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system

A. V. Seredkin, M. P. Tokarev, I. A. Plohih, O. A. Gobyzov, D. M. Markovich

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференции

Аннотация

Currently used recycling technologies have limitations on the composition of recyclable waste, which makes them specialized. Thus, the preliminary sorting of municipal solid waste is a necessary step, increasing the efficiency of using municipal solid waste as a resource. To sort municipal solid waste we developed a method for detecting and classifying waste on a conveyor line using neural network image processing. Images from a camera are fed to a neural network input, which determines the position and type of detected objects. To train the neural network a database of more than 13,000 municipal solid waste images was created. Mean-Average Precision for the neural network model was 64%.

Язык оригиналаанглийский
Номер статьи012127
Число страниц7
ЖурналJournal of Physics: Conference Series
Том1359
Номер выпуска1
DOI
СостояниеОпубликовано - 21 ноя 2019
Событие4th All-Russian Scientific Conference Thermophysics and Physical Hydrodynamics with the School for Young Scientists, TPH 2019 - Yalta, Crimea, Украина
Продолжительность: 15 сен 201922 сен 2019

Fingerprint Подробные сведения о темах исследования «Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать