Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system

A. V. Seredkin, M. P. Tokarev, I. A. Plohih, O. A. Gobyzov, D. M. Markovich

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

3 Цитирования (Scopus)

Аннотация

Currently used recycling technologies have limitations on the composition of recyclable waste, which makes them specialized. Thus, the preliminary sorting of municipal solid waste is a necessary step, increasing the efficiency of using municipal solid waste as a resource. To sort municipal solid waste we developed a method for detecting and classifying waste on a conveyor line using neural network image processing. Images from a camera are fed to a neural network input, which determines the position and type of detected objects. To train the neural network a database of more than 13,000 municipal solid waste images was created. Mean-Average Precision for the neural network model was 64%.

Язык оригиналаанглийский
Номер статьи012127
Число страниц7
ЖурналJournal of Physics: Conference Series
Том1359
Номер выпуска1
DOI
СостояниеОпубликовано - 21 ноя 2019
Событие4th All-Russian Scientific Conference Thermophysics and Physical Hydrodynamics with the School for Young Scientists, TPH 2019 - Yalta, Crimea, Украина
Продолжительность: 15 сен 201922 сен 2019

Fingerprint Подробные сведения о темах исследования «Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать