Detecting and visualizing 3-dimensional surgery

Stathis Antoniou, Louis H. Kauffman, Sofia Lambropoulou

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

Topological surgery in dimension 3 is intrinsically connected with the classification of 3-manifolds and with patterns of natural phenomena. In this, mostly expository, paper, we present two different approaches for understanding and visualizing the process of 3-dimensional surgery. In the first approach, we view the process in terms of its effect on the fundamental group. Namely, we present how 3-dimensional surgery alters the fundamental group of the initial manifold and present ways to calculate the fundamental group of the resulting manifold. We also point out how the fundamental group can detect the topological complexity of non-trivial embeddings that produce knotting. The second approach can only be applied for standard embeddings. For such cases, we give new visualizations of 3-dimensional surgery as rotations of the decompactified 2-sphere. Each rotation produces a different decomposition of the 3-sphere which corresponds to a different visualization of the 4-dimensional process of 3-dimensional surgery.

Язык оригиналаанглийский
Номер статьи1940015
Число страниц24
ЖурналJournal of Knot Theory and its Ramifications
Том28
Номер выпуска13
DOI
СостояниеОпубликовано - 1 ноя 2019

Fingerprint Подробные сведения о темах исследования «Detecting and visualizing 3-dimensional surgery». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать