Аннотация
We look at the concept of algorithmic complexity of isomorphisms between computable copies of Boolean algebras. Degrees of autostability are found for all prime Boolean algebras. It is shown that for any ordinals α and β with the condition 0 ≤ α ≤ β ≤ ω, there is a decidable model for which 0(α) is a degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability. It is proved that for any nonzero ordinal β ≤ ω, there is a decidable model for which there is no degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 98-114 |
Число страниц | 17 |
Журнал | Algebra and Logic |
Том | 57 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 1 июн 2018 |