Deep learning approaches to mid-term forecasting of social-economic and demographic effects of a pandemic

Dmitry Devyatkin, Yulia Otmakhova, Natalia Usenko, Ilya Sochenkov, Vladimir Budzko

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

Аннотация

The COVID-19 outburst has brought serious demographical, economic, and social impacts. Moreover, in large countries, these consequences can vary from region to region. Therefore, authorities and experts lack the models to predict these various impacts at the regional level. This paper presents deep neural network models to do a mid-term forecast of the COVID-19 effect in the Russian regions. The models are based on the various recurrent and sliding-window architectures and utilize the attention mechanism to consider the indicators of the neighbor regions. These models are trained on various data, including daily cases and deaths, the diseased age structure, transport availability of the regions, and the unemployment rate. The experimental evaluation of the models shows that the demographic and healthcare indicators can significantly improve mid-term economic impact prediction accuracy. We also revealed that the neighboring regions' data helps predict the pandemic's healthcare and demographical impact. Namely, we have detected improvement for both the number of infected and the death rate.

Язык оригиналаанглийский
Страницы (с-по)156-163
Число страниц8
ЖурналProcedia Computer Science
Том190
DOI
СостояниеОпубликовано - июл 2021
Событие2020 Annual International Conference on Brain-Inspired Cognitive Architectures for Artificial Intelligence: Eleventh Annual Meeting of the BICA Society, BICA*AI 2020 - Natal, Rio Grande do Norte, Бразилия
Продолжительность: 10 ноя 202015 ноя 2020

Предметные области OECD FOS+WOS

  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ

Fingerprint

Подробные сведения о темах исследования «Deep learning approaches to mid-term forecasting of social-economic and demographic effects of a pandemic». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать