Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

Abstract: Monotonicity conditions for the CABARET scheme approximating a quasilinear scalar conservation law with a convex flux are obtained. It is shown that the monotonicity of the CABARET scheme for Courant numbers r ∈ (0.5,1] does not ensure the complete decay of unstable strong discontinuities. For the CABARET scheme, a difference analogue of an entropy inequality is derived and a method is proposed ensuring the complete decay of unstable strong discontinuities in the difference solution for any Courant number at which the CABARET scheme is stable. Test computations illustrating these properties of the CABARET scheme are presented.

Язык оригиналаанглийский
Страницы (с-по)950-966
Число страниц17
ЖурналComputational Mathematics and Mathematical Physics
Том58
Номер выпуска6
DOI
СостояниеОпубликовано - 1 июн 2018

Fingerprint Подробные сведения о темах исследования «Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать