Counting spanning trees in cobordism of two circulant graphs

Galya Amanboldynovna Baigonakova, Ilya Aleksandrovich Mednykh

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

2 Цитирования (Scopus)

Аннотация

We consider a family of graphs Hn(s1, ..., sk; t1, ..., tl) that is a generalisation of the family of I-graphs, which, in turn, includes the generalized Petersen graphs. We present an explicit formula for the number τ(n) of spanning trees in these graphs in terms of the Chebyshev polynomials and find its asymptotics. Also, we show that the number of spanning trees can be represented in the form τ(n) = p n a(n)2; where a(n) is an integer sequence and p is a prescribed integer depending on the number of even elements in the sequence s1, ..., sk; t1, ..., tl and the parity of n.

Язык оригиналаанглийский
Страницы (с-по)1145-1157
Число страниц13
ЖурналСибирские электронные математические известия
Том15
DOI
СостояниеОпубликовано - 1 янв 2018

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint Подробные сведения о темах исследования «Counting spanning trees in cobordism of two circulant graphs». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать