Counting rooted spanning forests for circulant foliation over a graph

Liliya A. Grunwald, Young Soo Kwon, Ilya Mednykh

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

In this paper, we present a new method to produce explicit formulas for the number of rooted spanning forests f(n) for the infinite family of graphs Hn = Hn(G1, G2, …, Gm) obtained as a circulant foliation over a graph H on m vertices with fibers G1, G2, …,Gm. Each fiber Gi = Cn(si,1, si,2,…,si,ki) of this foliation is the circulant graph on n vertices with jumps si,1, si,2, …, si,ki. This family includes the family of generalized Petersen graphs, I-graphs, sandwiches of circulant graphs, discrete torus graphs and others.
The formulas are expressed through Chebyshev polynomials. We prove that the number of rooted spanning forests can be represented in the form f(n) = pf(H)a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending on the number of odd elements in the set of si,j. Finally, we find an asymptotic formula for f(n) through the Mahler measure of the associated Laurent polynomial.
Язык оригиналаанглийский
Страницы (с-по)535-548
Число страниц19
ЖурналTohoku Mathematical Journal
Том74
Номер выпуска4
DOI
СостояниеОпубликовано - 15 дек. 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Counting rooted spanning forests for circulant foliation over a graph». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать