Counting rooted spanning foresrs in cobordism of two circulant graphs

N. V. Abrosimov, G. A. Baigonakova, L. A. Grunwald, I. A. Mednykh

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We consider a family of graphs H-n(s(1), ..., s(k); t(1), ...,t(l)), which is a generalization of the family of I-graphs, which in turn, includes the generalized Petersen graphs and the prism graphs. We present an explicit formula for the number f(H)(n) of rooted spanning forests in these graphs in terms of Chebyshev polynomials and find its asymptotics. Also, we show that the number of rooted spanning forests can be represented in the form f(H)(n) = p a(n)(2), where a(n) is an integer sequence and p is a prescribed integer depending on the number of odd elements in the sequence s(1), ..., s(k), t(1), ..., t(l) and the parity of n.
Язык оригиналаанглийский
Страницы (с-по)814-823
Число страниц10
ЖурналSiberian Electronic Mathematical Reports
Том17
DOI
СостояниеОпубликовано - 2020

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Counting rooted spanning foresrs in cobordism of two circulant graphs». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать