Correction to: Degenerations of Zinbiel and nilpotent Leibniz algebras (Linear and Multilinear Algebra, (2018), 66, 4, (704-716), 10.1080/03081087.2017.1319457)

Ivan Kaygorodov, Yury Popov, Pozhidaev, Yury Volkov

Результат исследования: Научные публикации в периодических изданияхкомментарий, выступлениерецензирование

Аннотация

It was noted in Demir et al. [On classification of four-dimensional nilpotent Leibniz algebras. Comm Algebra. 2017;45(3):1012–1018]; Ismailov et al. [Degenerations of Leibniz and anticommutative algebras. Canad Math Bull. 2019;62(3):539–549] that there is a 4-dimensional nilpotent Leibniz algebra that is not included in the classification obtained in Albeverio et al. [Classification of 4-dimensional nilpotent complex Leibniz algebras. Extracta Math. 2006;21(3):197–210]. The construction of the graph of degenerations (see Kaygorodov et al. Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear Multilinear Algebra. 2018;66(4):704–716) is based on the classification of Albeverio et al. [Classification of 4-dimensional nilpotent complex Leibniz algebras. Extracta Math. 2006;21(3):197–210] and for this reason, this graph does not contain the mentioned algebra. This omission and some other small inaccuracies are corrected in the present corrigendum.

Язык оригиналаанглийский
Страницы (с-по)993-995
Число страниц3
ЖурналLinear and Multilinear Algebra
Том70
Номер выпуска5
DOI
СостояниеОпубликовано - 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Correction to: Degenerations of Zinbiel and nilpotent Leibniz algebras (Linear and Multilinear Algebra, (2018), 66, 4, (704-716), 10.1080/03081087.2017.1319457)». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать