Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations

Ilya Peshkov, Michal Pavelka, Evgeniy Romenski, Miroslav Grmela

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

25 Цитирования (Scopus)


Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).

Язык оригиналаанглийский
Страницы (с-по)1343-1378
Число страниц36
ЖурналContinuum Mechanics and Thermodynamics
Номер выпуска6
СостояниеОпубликовано - 1 нояб. 2018


Подробные сведения о темах исследования «Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations». Вместе они формируют уникальный семантический отпечаток (fingerprint).