Conflict-free data aggregation on a square grid when transmission distance is not less than 3

Adil Erzin, Roman Plotnikov

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

2 Цитирования (Scopus)

Аннотация

In this paper a Convergecast Scheduling Problem on a unit square grid, in each node of which there is a sensor with transmission distance d which is not less than 3, is considered. For the cases d= 1 and d= 2, polynomial algorithms, which construct the optimal solution to the problem, are known. For an arbitrary d, an approximate algorithm is proposed, the application of which gives an upper bound on the length of the conflict-free data aggregation schedule, depending on d. We conducted a priori and a posteriori analysis of the accuracy of this algorithm for various d comparing either with the optimal length of the schedule, or with a lower bound, the value of which we improved.

Язык оригиналаанглийский
Название основной публикацииAlgorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Revised Selected Papers
ИздательSpringer-Verlag GmbH and Co. KG
Страницы141-154
Число страниц14
Том10718 LNCS
ISBN (печатное издание)9783319727509
DOI
СостояниеОпубликовано - 2017
Событие13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017 - Vienna, Австрия
Продолжительность: 4 сен 20178 сен 2017

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том10718 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

Конференция

Конференция13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017
СтранаАвстрия
ГородVienna
Период04.09.201708.09.2017

Fingerprint Подробные сведения о темах исследования «Conflict-free data aggregation on a square grid when transmission distance is not less than 3». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать