Computational Complexity of the Problem of Choosing Typical Representatives in a 2-Clustering of a Finite Set of Points in a Metric Space

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

We consider the computational complexity of one extremal problem of choosing a subsetof p points from some given 2-clustering of a finite set in a metric space. Thechosen subset of points has to describe the given clusters in the best way from the viewpoint ofsome geometric criterion. This is a formalization of an applied problem of data mining whichconsists in finding a subset of typical representatives of a dataset composed of two classes basedon the function of rival similarity. The problem is proved to be NP-hard. To this end, wepolynomially reduce to the problem one of the well-known problems NP-hard in the strong sense,the p-median problem.

Язык оригиналаанглийский
Страницы (с-по)242-248
Число страниц7
ЖурналJournal of Applied and Industrial Mathematics
Том14
Номер выпуска2
DOI
СостояниеОпубликовано - 1 мая 2020

Fingerprint Подробные сведения о темах исследования «Computational Complexity of the Problem of Choosing Typical Representatives in a 2-Clustering of a Finite Set of Points in a Metric Space». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать