Complexity of Discrete Seifert Foliations over a Graph

Young Soo Kwon, A. D. Mednykh, I. A. Mednykh

Результат исследования: Научные публикации в периодических изданияхстатья


Abstract: We study the complexity of an infinite family of graphs Hn=Hn (G1,G2,...,Gm) that are discrete Seifert foliations over a given graph H on m vertices with fibers G1,G2,...,Gm. Each fiber Gi = Cn(Si,1,Si,2,...,Si,ki) of this foliation is a circulant graph on n vertices with jumps Si,1,Si,2,...,Si,ki. The family of discrete Seifert foliations is sufficiently large. It includes the generalized Petersen graphs, I-graphs, Y-graphs, H-graphs, sandwiches of circulant graphs, discrete torus graphs, and other graphs. A closed-form formula for the number τ(n) of spanning trees in Hn is obtained in terms of Chebyshev polynomials, some analytical and arithmetic properties of this function are investigated, and its asymptotics as n → ∞ is determined.

Язык оригиналаанглийский
Страницы (с-по)286-289
Число страниц4
ЖурналDoklady Mathematics
Номер выпуска3
СостояниеОпубликовано - 1 мая 2019

Fingerprint Подробные сведения о темах исследования «Complexity of Discrete Seifert Foliations over a Graph». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать