Аннотация
The properties of (q1, q2)-quasimetric spaces are examined. Multivalued covering mappings between (q1, q2)-quasimetric spaces are investigated. Given two multivalued mappings between (q1, q2)-quasimetric spaces such that one of them is covering and the other satisfies the Lipschitz condition, sufficient conditions for these mappings to have a coincidence point are obtained. A theorem on the stability of coincidence points with respect to small perturbations in the considered mappings is proved.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 438-441 |
Число страниц | 4 |
Журнал | Doklady Mathematics |
Том | 96 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 1 сен 2017 |