Аннотация
A Schur ring over a finite group is said to be decomposable if it is the generalized wreath product of Schur rings over smaller groups. In this paper we establish a sufficient condition for a decomposable Schur ring over the direct product of elementary abelian groups to be a CI-Schur ring. By using this condition we offer short proofs for some known results on the CI-property for decomposable Schur rings over an elementary abelian group of rank at most 5.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 147-160 |
Число страниц | 14 |
Журнал | Algebra Colloquium |
Том | 26 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 мар 2019 |