Chemical structure of atmospheric pressure premixed laminar formic acid/hydrogen flames

K. N. Osipova, S. Mani Sarathy, O. P. Korobeinichev, A. G. Shmakov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

3 Цитирования (Scopus)


The work presents an experimental and kinetic modeling study of laminar premixed formic acid [HC(O)OH]/H 2 /O 2 /Ar flames at different equivalence ratios (ϕ= 0.85, 1.1 and 1.3) stabilized on a flat burner at atmospheric pressure, as well as laminar flame speed of HC(O)OH/O 2 /Ar flames (ϕ= 0.5-1.5) at 1 atm. Flame structure as well as laminar flame speed were simulated using three different detailed chemical kinetic mechanisms proposed for formic acid oxidation. The components in the fuel blends show different consumption profiles, namely, hydrogen is consumed slower than formic acid. According to kinetic analysis, the reason of the observed phenomenon is that the studied flames have hydrogen as a fuel but also as an intermediate product formed from HC(O)OH decomposition. Comparison of the measured and simulated flame structure shows that all the mechanisms satisfactorily predict the mole fraction profiles of the reactants, main products, and intermediates. It is noteworthy that the mechanisms proposed by Glarborg et al., Konnov et al. and the updated AramcoMech2.0 adequately predict the spatial variations in the mole fractions of free radicals, such as H, OH O and HO 2. However, some drawbacks of the mechanisms used were identified; in particular, they predict different concentrations of CH 2 O. As for laminar flame speed simulations, the Konnov et al. mechanism predicts around two times higher values than in experiment, while the Glarborg et al. and updated AramcoMech2.0 show good agreement with the experimental data.

Язык оригиналаанглийский
Страницы (с-по)2379-2386
Число страниц8
ЖурналProceedings of the Combustion Institute
Номер выпуска2
Ранняя дата в режиме онлайн28 июл 2020
СостояниеОпубликовано - янв 2021


Подробные сведения о темах исследования «Chemical structure of atmospheric pressure premixed laminar formic acid/hydrogen flames». Вместе они формируют уникальный семантический отпечаток (fingerprint).