Bounded Reducibility for Computable Numberings

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование


The theory of numberings gives a fruitful approach to studying uniform computations for various families of mathematical objects. The algorithmic complexity of numberings is usually classified via the reducibility ≤ between numberings. This reducibility gives rise to an upper semilattice of degrees, which is often called the Rogers semilattice. For a computable family S of c.e. sets, its Rogers semilattice R(S) contains the ≤ -degrees of computable numberings of S. Khutoretskii proved that R(S) is always either one-element, or infinite. Selivanov proved that an infinite R(S) cannot be a lattice. We introduce a bounded version of reducibility between numberings, denoted by ≤ bm. We show that Rogers semilattices Rbm(S), induced by ≤ bm, exhibit a striking difference from the classical case. We prove that the results of Khutoretskii and Selivanov cannot be extended to our setting: For any natural number n≥ 2, there is a finite family S of c.e. sets such that its semilattice Rbm(S) has precisely 2 n- 1 elements. Furthermore, there is a computable family T of c.e. sets such that Rbm(T) is an infinite lattice.

Язык оригиналаанглийский
Название основной публикацииComputing with Foresight and Industry - 15th Conference on Computability in Europe, CiE 2019, Proceedings
РедакторыFlorin Manea, Barnaby Martin, Daniël Paulusma, Giuseppe Primiero
ИздательSpringer-Verlag GmbH and Co. KG
Число страниц12
ISBN (печатное издание)9783030229955
СостояниеОпубликовано - 1 янв. 2019
Событие15th Conference on Computability in Europe, CiE 2019 - Durham, Великобритания
Продолжительность: 15 июл. 201919 июл. 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11558 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349


Конференция15th Conference on Computability in Europe, CiE 2019


Подробные сведения о темах исследования «Bounded Reducibility for Computable Numberings». Вместе они формируют уникальный семантический отпечаток (fingerprint).