Bound coherent structures propagating on the free surface of deep water

Dmitry Kachulin, Sergey Dremov, Alexander Dyachenko

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

This article presents a study of bound periodically oscillating coherent structures arising on the free surface of deep water. Such structures resemble the well known bi-soliton solution of the nonlinear Schrödinger equation. The research was carried out in the super-compact Dyachenko- Zakharov equation model for unidirectional deep water waves and the full system of nonlinear equations for potential flows of an ideal incompressible fluid written in conformal variables. The special numerical algorithm that includes a damping procedure of radiation and velocity adjusting was used for obtaining such bound structures. The results showed that in both nonlinear models for deep water waves after the damping is turned off, a periodically oscillating bound structure remains on the fluid surface and propagates stably over hundreds of thousands of characteristic wave periods without losing energy.

Язык оригиналаанглийский
Номер статьи115
ЖурналFluids
Том6
Номер выпуска3
DOI
СостояниеОпубликовано - мар 2021

Предметные области OECD FOS+WOS

  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ

Fingerprint

Подробные сведения о темах исследования «Bound coherent structures propagating on the free surface of deep water». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать