Autostability relative to strong constructivizations of Boolean algebras with distinguished ideals

D. E. Pal’chunov, A. V. Trofimov, A. I. Turko

    Результат исследования: Научные публикации в периодических изданияхстатья

    3 Цитирования (Scopus)

    Аннотация

    We study Boolean algebras with distinguished ideals (I-algebras). We proved that a local I-algebra is autostable relative to strong constructivizations if and only if it is a direct product of finitely many prime models. We describe complete formulas of elementary theories of local Boolean algebras with distinguished ideals and a finite tuple of distinguished constants. We show that countably categorical I-algebras, finitely axiomatizable I-algebras, superatomic Boolean algebras with one distinguished ideal, and Boolean algebras are autostable relative to strong constructivizations if and only if they are products of finitely many prime models.

    Язык оригиналаанглийский
    Страницы (с-по)490-498
    Число страниц9
    ЖурналSiberian Mathematical Journal
    Том56
    Номер выпуска3
    DOI
    СостояниеОпубликовано - 26 мая 2015

    Fingerprint Подробные сведения о темах исследования «Autostability relative to strong constructivizations of Boolean algebras with distinguished ideals». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать