Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem

E. M. Rudoy, H. Itou, N. P. Lazarev

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)

Аннотация

The equilibrium problem for an elastic body having an inhomogeneous inclusion withcurvilinear boundaries is considered within the framework of antiplane shear. We assume thatthere is a power-law dependence of the shear modulus of the inclusion on a small parametercharacterizing its width. We justify passage to the limit as the parameter vanishes and constructan asymptotic model of an elastic body containing a thin inclusion. We also show that, dependingon the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion,ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strongconvergence is established of the family of solutions of the original problem to the solution of thelimiting one.

Язык оригиналаанглийский
Страницы (с-по)129-140
Число страниц12
ЖурналJournal of Applied and Industrial Mathematics
Том15
Номер выпуска1
DOI
СостояниеОпубликовано - фев 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА
  • 2.03 МЕХАНИКА И МАШИНОСТРОЕНИЕ

Fingerprint

Подробные сведения о темах исследования «Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать