Аннотация
The paper deals with initial-boundary value problems for the linear wave equation whose solutions stabilize to zero in a finite time. We prove that problems in this class remain exponentially stable in L 2 as well as in C 2 under small bounded perturbations of the wave operator. To show this for C 2, we prove a smoothing result implying that the solutions to the perturbed problems become eventually C 2-smooth for any H 1 × L 2-initial data.
Язык оригинала | английский |
---|---|
Номер статьи | 012056 |
Число страниц | 6 |
Журнал | Journal of Physics: Conference Series |
Том | 894 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 22 окт 2017 |