Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation

Dmitry V. Lukyanenko, Maxim A. Shishlenin, Vladimir T. Volkov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

11 Цитирования (Scopus)

Аннотация

In this paper, a new asymptotic-numerical approach to solving an inverse boundary value problem for a nonlinear singularly perturbed parabolic equation with time-periodic coefficients is proposed. An unknown boundary condition is reconstructed by using known additional information about the location of a moving front. An asymptotic analysis of the direct problem allows us to reduce the original inverse problem to that with a simpler numerical solution. Numerical examples demonstrate the efficiency of the method.

Язык оригиналаанглийский
Страницы (с-по)745-758
Число страниц14
ЖурналJournal of Inverse and Ill-Posed Problems
Том27
Номер выпуска5
DOI
СостояниеОпубликовано - окт. 2019

Fingerprint

Подробные сведения о темах исследования «Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать