Artin's braids, braids for three space, and groups σ n 4 and G n k

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

We construct a group σn4 corresponding to the motion of points in R 3 from the point of view of Delaunay triangulations. We study homomorphisms from pure braids on n strands to the product of copies of σn4. We will also study the group of pure braids in R 3, which is described by a fundamental group of the restricted configuration space of R 3, and define the group homomorphism from the group of pure braids in R 3 to σn4. At the end of this paper, we give some comments about relations between the restricted configuration space of R 3 and triangulations of the 3-dimensional ball and Pachner moves.

Язык оригиналаанглийский
Номер статьи1950063
Число страниц20
ЖурналJournal of Knot Theory and its Ramifications
Том28
Номер выпуска10
DOI
СостояниеОпубликовано - 1 сен 2019

Fingerprint Подробные сведения о темах исследования «Artin's braids, braids for three space, and groups σ <sub>n</sub> <sup>4</sup> and G <sub>n</sub> <sup>k</sup>». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать