Approximation polynomial algorithm for the data editing and data cleaning problem

A. A. Ageeva, A. V. Kel’manov, A. V. Pyatkin, S. A. Khamidullin, V. V. Shenmaier

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

11 Цитирования (Scopus)


The work considers the mathematical aspects of one of the most fundamental problems of data analysis: search (choice) among a collection of objects for a subset of similar ones. In particular, the problem appears in connection with data editing and cleaning (removal of irrelevant (not similar) elements). We consider the model of this problem, i.e., the problem of searching for a subset of maximal cardinality in a finite set of points of the Euclidean space for which quadratic variation of points with respect to its unknown centroid does not exceed a given fraction of the quadratic variation of points of the input set with respect to its centroid. It is proved that the problem is strongly NP-hard. A polynomial 1/2-approximation algorithm is proposed. The results of the numerical simulation demonstrating the effectiveness of the algorithm are presented.

Язык оригиналаанглийский
Страницы (с-по)365-370
Число страниц6
ЖурналPattern Recognition and Image Analysis
Номер выпуска3
СостояниеОпубликовано - 1 июл 2017


Подробные сведения о темах исследования «Approximation polynomial algorithm for the data editing and data cleaning problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).