Analogues of Korn’s Inequality on Heisenberg Groups

Результат исследования: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)

Аннотация

Abstract: Two analogues of Korn’s inequality on Heisenberg groups are constructed. First, the norm of the horizontal differential is estimated in terms of its symmetric part. Second, Korn’s inequality is treated as a coercive estimate for a differential operator whose kernel coincides with the Lie algebra of the isometry group. For this purpose, we construct a differential operator whose kernel coincides with the Lie algebra of the isometry group on Heisenberg groups and prove a coercive estimate for this operator. Additionally, a coercive estimate is proved for a differential operator whose kernel coincides with the Lie algebra of the group of conformal mappings on Heisenberg groups.

Язык оригиналаанглийский
Страницы (с-по)181-184
Число страниц4
ЖурналDoklady Mathematics
Том99
Номер выпуска2
DOI
СостояниеОпубликовано - 1 мар 2019

Fingerprint Подробные сведения о темах исследования «Analogues of Korn’s Inequality on Heisenberg Groups». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать