An energy functional for Lagrangian tori in CP2

Hui Ma, Andrey E. Mironov, Dafeng Zuo

Результат исследования: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)

Аннотация

A two-dimensional periodic Schrödingier operator is associated with every Lagrangian torus in the complex projective plane (Formula presented.). Using this operator, we introduce an energy functional on the set of Lagrangian tori. It turns out this energy functional coincides with the Willmore functional (Formula presented.) introduced by Montiel and Urbano. We study the energy functional on a family of Hamiltonian-minimal Lagrangian tori and support the Montiel–Urbano conjecture that the minimum of the functional is achieved by the Clifford torus. We also study deformations of minimal Lagrangian tori and show that if a deformation preserves the conformal type of the torus, then it also preserves the area, i.e., preserves the value of the energy functional. In particular, the deformations generated by Novikov–Veselov equations preserve the area of minimal Lagrangian tori.

Язык оригиналаанглийский
Страницы (с-по)583-595
Число страниц13
ЖурналAnnals of Global Analysis and Geometry
Том53
Номер выпуска4
DOI
СостояниеОпубликовано - 1 июн 2018

Fingerprint Подробные сведения о темах исследования «An energy functional for Lagrangian tori in CP2». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать