An Approximation Scheme for the Problem of Finding a Subsequence

A. V. Kel’manov, S. M. Romanchenko, S. A. Khamidullin

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

5 Цитирования (Scopus)

Аннотация

We consider a strongly NP-hard Euclidean problem of finding a subsequence in a finite sequence. The criterion of the solution is the minimum sum of squared distances from the elements of a sought subsequence to its geometric center (centroid). It is assumed that a sought subsequence contains a given number of elements. In addition, a sought subsequence should satisfy the following condition: the difference between the indices of each previous and subsequent points is bounded with given lower and upper constants.We present an approximation algorithm of solving the problem and prove that it is a fully polynomial-time approximation scheme (FPTAS) when the space dimension is bounded by a constant.

Язык оригиналаанглийский
Страницы (с-по)313-323
Число страниц11
ЖурналNumerical Analysis and Applications
Том10
Номер выпуска4
DOI
СостояниеОпубликовано - 1 окт. 2017

Fingerprint

Подробные сведения о темах исследования «An Approximation Scheme for the Problem of Finding a Subsequence». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать