Algorithms for the inverse modelling of transport and transformation of atmospheric pollutants

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

1 Цитирования (Scopus)


When studying air quality, a key parameter for assessment and forecast is information on emission sources. In applications, this information is not fully available and can be compensated by air quality monitoring data and inverse modelling algorithms. Because of the rapid development of satellite chemical monitoring systems, they are becoming more useful in air quality studies. Such systems provide measurements in the form of concentration field images. In this paper, we consider an inverse source problem and a corresponding data assimilation problem for a chemical transport model. The problem of assimilation of data given as images is considered as a sequence of linked inverse source problems. Each individual inverse problem solution is carried out by variational and Newton-Kantorovich type algorithms. In the numerical experiment presented, an emission source of a primary pollutant is reconstucted via the concetration field of a secondary pollutant. Both data assimilation and inverse problem solution algorithms are capable of approximating the unknown source.

Язык оригиналаанглийский
Номер статьи012052
ЖурналIOP Conference Series: Earth and Environmental Science
Номер выпуска1
СостояниеОпубликовано - 17 дек. 2018
СобытиеInternational Conference and Early Career Scientists School on Environmental Observations, Modeling and Information Systems, ENVIROMIS 2018 - Tomsk, Российская Федерация
Продолжительность: 5 июл. 201811 июл. 2018


Подробные сведения о темах исследования «Algorithms for the inverse modelling of transport and transformation of atmospheric pollutants». Вместе они формируют уникальный семантический отпечаток (fingerprint).