Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations

Leonid L. Frumin

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We introduce numerical algorithms for solving the inverse and direct scattering problems for the Manakov model of vector nonlinear Schrödinger equation. We have found an algebraic group of 4-block matrices with off-diagonal blocks consisting of special vector-like matrices for generalizing the scalar problem's efficient numerical algorithms to the vector case. The inversion of block matrices of the discretized system of Gelfand-Levitan-Marchenko integral equations solves the inverse scattering problem using the vector variant the Toeplitz Inner Bordering algorithm of Levinson's type. The reversal of steps of the inverse problem algorithm gives the solution of the direct scattering problem. Numerical tests confirm the proposed vector algorithms' efficiency and stability. We also present an example of the algorithms' application to simulate the Manakov vector solitons' collision.

Язык оригиналаанглийский
Страницы (с-по)369-383
Число страниц15
ЖурналJournal of Inverse and Ill-Posed Problems
Том29
Номер выпуска3
Ранняя дата в режиме онлайн2 дек 2020
DOI
СостояниеОпубликовано - 1 июн 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать