Algebras of Binary Formulas for Compositions of Theories

D. Yu Emel’yanov, B. Sh Kulpeshov, S. V. Sudoplatov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We consider algebras of binary formulas for compositions of theories both in the general case and as applied to ℵ0-categorical, strongly minimal, and stable theories, linear preorders, cyclic preorders, and series of finite structures. It is shown that edefinable compositions preserve isomorphisms and elementary equivalence and have basicity formed by basic formulas of the initial theories. We find criteria for e-definable compositions to preserve ℵ0-categoricity, strong minimality, and stability. It is stated that e-definable compositions of theories specify compositions of algebras of binary formulas. A description of forms of these algebras is given relative to compositions with linear orders, cyclic orders, and series of finite structures.

Язык оригиналаанглийский
Страницы (с-по)295-312
Число страниц18
ЖурналAlgebra and Logic
Том59
Номер выпуска4
DOI
СостояниеОпубликовано - сен 2020

Fingerprint

Подробные сведения о темах исследования «Algebras of Binary Formulas for Compositions of Theories». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать