Affine zipper fractal interpolation functions

A. K.B. Chand, N. Vijender, P. Viswanathan, A. V. Tetenov

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

This paper introduces a univariate interpolation scheme using a binary parameter called signature such that the graph of the interpolant—which we refer to as affine zipper fractal interpolation function—is obtained as an attractor of a suitable affine zipper. The scaling vector function is identified so that the graph of the corresponding affine zipper fractal interpolation function can be inscribed within a prescribed rectangle. Convergence analysis of the proposed affine zipper fractal interpolant is carried out. It is observed that for a fixed choice of discrete scaling factors, the box counting dimension of the graph of an affine zipper fractal interpolant is independent of the choice of a signature. Several examples of affine zipper fractal interpolants are presented to supplement our theory.

Язык оригиналаанглийский
Страницы (с-по)319-344
Число страниц26
ЖурналBIT Numerical Mathematics
Том60
Номер выпуска2
DOI
СостояниеОпубликовано - 1 июн 2020

ГРНТИ

  • 27 МАТЕМАТИКА

Fingerprint Подробные сведения о темах исследования «Affine zipper fractal interpolation functions». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать