A unified hyperbolic formulation for viscous fluids and elastoplastic solids

Michael Dumbser, Ilya Peshkov, Evgeniy Romenski

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

6 Цитирования (Scopus)

Аннотация

We discuss a unified flow theory which in a single system of hyperbolic partial differential equations (PDEs) can describe the two main branches of continuum mechanics, fluid dynamics and solid dynamics. The fundamental difference from the classical continuum models, such as the Navier–Stokes, for example, is that the finite length scale of the continuum particles is not ignored but kept in the model in order to semi-explicitly describe the essence of any flows, that is the process of continuum particles rearrangements. To allow the continuum particle rearrangements, we admit the deformability of particle which is described by the distortion field. The ability of media to flow is characterized by the strain dissipation time which is a characteristic time necessary for a continuum particle to rearrange with one of its neighboring particles. It is shown that the continuum particle length scale is intimately connected with the dissipation time. The governing equations are represented by a system of first-order hyperbolic PDEs with source terms modeling the dissipation due to particle rearrangements. Numerical examples justifying the reliability of the proposed approach are demonstrated.

Язык оригиналаанглийский
Название основной публикацииTheory, Numerics and Applications of Hyperbolic Problems II
РедакторыC Klingenberg, M Westdickenberg
ИздательSpringer New York LLC
Страницы451-463
Число страниц13
Том237
ISBN (печатное издание)9783319915470
DOI
СостояниеОпубликовано - 1 янв 2018
Событие16th International Conference on Hyperbolic Problems: Theory, Numerics and Applications, 2016 - Aachen, Германия
Продолжительность: 1 авг 20165 авг 2016

Серия публикаций

НазваниеSpringer Proceedings in Mathematics & Statistics
ИздательSPRINGER
Том237
ISSN (печатное издание)2194-1009

Конференция

Конференция16th International Conference on Hyperbolic Problems: Theory, Numerics and Applications, 2016
СтранаГермания
ГородAachen
Период01.08.201605.08.2016

Fingerprint Подробные сведения о темах исследования «A unified hyperbolic formulation for viscous fluids and elastoplastic solids». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать