Аннотация
We explore a probabilistic model of an artistic text: words of the text are chosen independently of each other in accordance with a discrete probability distribution on an infinite dictionary. The words are enumerated 1, 2,:::, and the probability of appearing the i'th word is asymptotically a power function. Bahadur proved that in this case the number of different words as a function of the length of the text, again, asymptotically behaves like a power function. On the other hand, in the applied statistics community there are statements known as the Zipf's and Heaps' laws that are supported by empirical observations. We highlight the links between Bahadur results and Zipf's/Heaps' laws, and introduce and analyse a corresponding statistical test.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1822-1832 |
Число страниц | 11 |
Журнал | Сибирские электронные математические известия |
Том | 16 |
DOI | |
Состояние | Опубликовано - 1 янв 2019 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА