A pronormality criterion for supplements to abelian normal subgroups

A. S. Kondrat’ev, N. V. Maslova, D. O. Revin

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

8 Цитирования (Scopus)


A subgroup H of a group G is called pronormal if, for any element g ∈ G, the subgroups H and Hg are conjugate in the subgroup <H,Hg>. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G = HV, then H is pronormal in G if and only if U = NU(H)[H,U] for any H-invariant subgroup U of V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q ≡ ±3 (mod 8) contains a nonpronormal subgroup of odd index. Hence, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.

Язык оригиналаанглийский
Страницы (с-по)145-150
Число страниц6
ЖурналProceedings of the Steklov Institute of Mathematics
Номер выпуска1
СостояниеОпубликовано - 1 апр. 2017


Подробные сведения о темах исследования «A pronormality criterion for supplements to abelian normal subgroups». Вместе они формируют уникальный семантический отпечаток (fingerprint).