A new randomized vector algorithm for iterative solution of large linear systems

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

In this letter we suggest a new randomized scalable stochastic-matrix-based algorithms for calculation of large matrix iterations. Special focus is on positive or irreducible nonnegative class of matrices. As an application, a new randomized vector algorithm for iterative solution of large linear systems of algebraic equations governed by M-matrices is constructed. The idea behind these stochastic methods is in a randomized vector representation of matrix iterations. The iterations are performed by sampling random columns only, thus avoiding not only matrix but also matrix vector multiplications. As a result, the algorithm is highly efficient for solving linear equations of high dimension, its computational cost depends linearly on the dimension. Extensions of the suggested randomized iteration method to general classes of matrices are also discussed.

Язык оригиналаанглийский
Номер статьи107830
ЖурналApplied Mathematics Letters
Том126
DOI
СостояниеОпубликовано - апр. 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «A new randomized vector algorithm for iterative solution of large linear systems». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать