A New Non-Overlapping Domain Decomposition Method for a 3D Laplace Exterior Problem

V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

We propose a method for solving three-dimensional boundary value problems for Laplace’s equation in an unbounded domain. It is based on non-overlapping decomposition of the exterior domain into two subdomains so that the initial problem is reduced to two subproblems, namely, exterior and interior boundary value problems on a sphere. To solve the exterior boundary value problem, we propose a singularity isolation method. To match the solutions on the interface between the subdomains (the sphere), we introduce a special operator equation approximated by a system of linear algebraic equations. This system is solved by iterative methods in Krylov subspaces. The performance of the method is illustrated by solving model problems.

Язык оригиналаанглийский
Страницы (с-по)346-358
Число страниц13
ЖурналNumerical Analysis and Applications
Том11
Номер выпуска4
DOI
СостояниеОпубликовано - 1 окт 2018

Fingerprint Подробные сведения о темах исследования «A New Non-Overlapping Domain Decomposition Method for a 3D Laplace Exterior Problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать