A lower bound on the size of the largest metrically regular subset of the Boolean cube

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

Let A be an arbitrary subset of the Boolean cube, and  be the set of all vectors of the Boolean cube, which are at the maximal possible distance from the set A. If the set of all vectors at the maximal distance from  coincides with A, then the set A is called a metrically regular set. The problem of investigating metrically regular sets appears when studying bent functions, which have important applications in cryptography and coding theory. In this work a special subclass of strongly metrically regular subsets of the Boolean cube is studied. An iterative construction of strongly metrically regular sets is obtained. The formula for the number of sets which can be obtained via this construction is derived. Constructions for two families of large metrically regular sets are presented. Exact sizes of sets from these families are calculated. These sizes give us the best lower bound on sizes of largest metrically regular subsets of the Boolean cube.

Язык оригиналаанглийский
Страницы (с-по)777-791
Число страниц15
ЖурналCryptography and Communications
Том11
Номер выпуска4
DOI
СостояниеОпубликовано - 15 июл 2019

Fingerprint Подробные сведения о темах исследования «A lower bound on the size of the largest metrically regular subset of the Boolean cube». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать