A first-order hyperbolic system of governing equations for miscible and viscous compressible fluids

M. Groom, B. Thornber, E. Romenski

Результат исследования: Материалы конференцийматериалырецензирование

Аннотация

In this paper we introduce a reformulation of the compressible multicomponent Navier-Stokes equations that govern the behaviour of mixtures of miscible gases. The resulting equation set is a first-order hyperbolic system containing stiff source terms, which recovers the conventional parabolic theory of viscosity, conduction and diffusion as a first-order approximation in the relaxation limit. An important advantage of this approach versus other first-order reformulations of the Navier-Stokes equations is that the wave speeds remain finite as some relaxation parameter tends to zero. The complete system of equations is presented in one-dimension for binary mixtures of viscous, heat conducting gases.

Язык оригиналаанглийский
СостояниеОпубликовано - 2018
Событие10th International Conference on Computational Fluid Dynamics, ICCFD 2018 - Barcelona, Испания
Продолжительность: 9 июл. 201813 июл. 2018

Конференция

Конференция10th International Conference on Computational Fluid Dynamics, ICCFD 2018
Страна/TерриторияИспания
ГородBarcelona
Период09.07.201813.07.2018

Предметные области OECD FOS+WOS

  • 2.04 ХИМИЧЕСКИЕ ТЕХНОЛОГИИ

Цитировать