Аннотация
In this paper we introduce a reformulation of the compressible multicomponent Navier-Stokes equations that govern the behaviour of mixtures of miscible gases. The resulting equation set is a first-order hyperbolic system containing stiff source terms, which recovers the conventional parabolic theory of viscosity, conduction and diffusion as a first-order approximation in the relaxation limit. An important advantage of this approach versus other first-order reformulations of the Navier-Stokes equations is that the wave speeds remain finite as some relaxation parameter tends to zero. The complete system of equations is presented in one-dimension for binary mixtures of viscous, heat conducting gases.
Язык оригинала | английский |
---|---|
Состояние | Опубликовано - 2018 |
Событие | 10th International Conference on Computational Fluid Dynamics, ICCFD 2018 - Barcelona, Испания Продолжительность: 9 июл. 2018 → 13 июл. 2018 |
Конференция
Конференция | 10th International Conference on Computational Fluid Dynamics, ICCFD 2018 |
---|---|
Страна/Tерритория | Испания |
Город | Barcelona |
Период | 09.07.2018 → 13.07.2018 |
Предметные области OECD FOS+WOS
- 2.04 ХИМИЧЕСКИЕ ТЕХНОЛОГИИ