A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic

Maxim P. Savelov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We consider a polynomial scheme with N outcomes. The Pearson statistic is the classical one for testing the hypothesis that the probabilities of outcomes are given by the numbers p1,.., pN. We suggest a couple of N-2 statistics which along with the Pearson statistics constitute a set of N-1 asymptotically jointly independent random variables, and find their limit distributions. The Pearson statistics is the square of the length of asymptotically normal random vector. The suggested statistics are coordinates of this vector in some auxiliary spherical coordinate system.

Язык оригиналаанглийский
Страницы (с-по)39-45
Число страниц7
ЖурналDiscrete Mathematics and Applications
Том32
Номер выпуска1
DOI
СостояниеОпубликовано - 1 февр. 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать