Аннотация
In polar coordinates, a discrete analog of the conjugate-operator model of a heat conduction problem is formulated to hold the structure of the original model. The difference scheme converges with second-order accuracy in the case of discontinuous parameters of the medium in the Fourier law and irregular grids. An efficient algorithm for solving the discrete conjugate-operator model when heat conduction tensor is a unit operator is proposed.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 244-258 |
Число страниц | 15 |
Журнал | Numerical Analysis and Applications |
Том | 10 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 июл 2017 |