Аннотация

We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.

Язык оригиналаанглийский
Номер статьи10
ЖурналComputing and Software for Big Science
Том4
Номер выпуска1
DOI
СостояниеОпубликовано - дек 2020

Предметные области OECD FOS+WOS

  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
  • 1.03.UN ФИЗИКИ, ЯДЕРНАЯ

Fingerprint

Подробные сведения о темах исследования «A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать