A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers

Gang Chen, Jiawei He, Ilia Ponomarenko, Andrey Vasil'Ev

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Recent classification of 3/2 -transitive permutation groups leaves us with three infinite families of groups which are neither 2-transitive, nor Frobenius, nor one-dimensional affine. The groups of the first two families correspond to special actions of PSL(2, q) and PΓL(2, q), whereas those of the third family are the affine solvable subgroups of AGL(2, q) found by D. Passman in 1967. The association schemes of the groups in each of these families are known to be pseudocyclic. It is proved that apart from three particular cases, each of these exceptional pseudocyclic schemes is characterized up to isomorphism by the tensor of its 3-dimensional intersection numbers.

Язык оригиналаанглийский
Номер статьи#P1.10
ЖурналArs Mathematica Contemporanea
Том21
Номер выпуска1
DOI
СостояниеОпубликовано - 2021

Предметные области OECD FOS+WOS

  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать